您选择的条件: LI Xu
  • Nutrient coordination mechanism of tiger nut induced by rhizosphere soil nutrient variation in an arid area, China

    分类: 生物学 >> 植物学 提交时间: 2023-10-17 合作期刊: 《干旱区科学》

    摘要: Tiger nut is a bioenergy crop planted in arid areas of northern China to supply oil and adjust the planting structure. However, in the western region of Inner Mongolia Autonomous Region, China, less water resources have resulted in a scarcity of available farmland, which has posed a huge obstacle to planting tiger nut. Cultivation of tiger nut on marginal land can effectively solve this problem. To fully unlock the production potential of tiger nut on marginal land, it is crucial for managers to have comprehensive information on the adaptive mechanism and nutrient requirement of tiger nut in different growth periods. This study aims to explore these key information from the perspective of nutrient coordination strategy of tiger nut in different growth periods and their relationship with rhizosphere soil nutrients. Three fertilization treatments including no fertilization (N:P (nitrogen:phosphorous)=0:0), traditional fertilization (N:P=15:15), and additional N fertilizer (N:P=60:15)) were implemented on marginal land in the Dengkou County. Plant and soil samples were collected in three growth periods, including stolon tillering period, tuber expanding period, and tuber mature period. Under no fertilization, there was a significant correlation between N and P contents of tiger nut roots and tubers and the same nutrients in the rhizosphere soil (P<0.05). Carbon (C), N, and P contents of roots were significantly higher than those of leaves (P<0.05), and the C:N ratio of all organs was higher than those under other treatments before tuber maturity (P<0.05). Under traditional fertilization, there was a significant impact on the P content of tiger nut tubers (P<0.05). Under additional N fertilizer, the accumulation rate of N and P was faster in stolons than in tubers (P<0.05) with lower N:P ratio in stolons during the tuber expansion period (P<0.05), but higher N:P ratio in tubers (P<0.05). The limited availability of nutrients in the rhizosphere soil prompts tiger nut to increase the C:N ratio, improving N utilization efficiency, and maintaining N:P ratio in tubers. Elevated N levels in the rhizosphere soil decrease the C:N ratio of tiger nut organs and N:P ratio in stolons, promoting rapid stolon growth and shoot production. Supplementary P is necessary during tuber expansion, while a higher proportion of N in fertilizers is crucial for the aboveground biomass production of tiger nut.

  • Monitoring fire regimes and assessing their driving factors in Central Asia

    分类: 地球科学 >> 地理学 提交时间: 2021-06-04 合作期刊: 《干旱区科学》

    摘要: Relatively little is known about fire regimes in grassland and cropland in Central Asia. In this study, eleven variables of fire regimes were measured from 2001 to 2019 by utilizing the burned area and active fire product, which was obtained and processed from the GEE (Google Earth Engine) platform, to describe the incidence, inter-annual variability, peak month and size of fire in four land cover types (forest, grassland, cropland and bare land). Then all variables were clustered to define clusters of fire regimes with unique fire attributes using the K-means algorithm. Results showed that Kazakhstan (KAZ) was the most affected by fire in Central Asia. Fire regimes in cropland in KAZ had the frequent, large and intense characters, which covered large burned areas and had a long duration. Fires in grassland mainly occurred in central KAZ and had the small scale and high-intensity characters with different quarterly frequencies. Fires in forest were mainly distributed in northern KAZ and eastern KAZ. Although fires in grassland underwent a shift from more to less frequent from 2001 to 2019 in Central Asia, vigilance is needed because most fires in grassland occur suddenly and cause harm to humans and livestock.

  • Grazing every month minimizes size but boosts photosynthesis in Stipa grandis in the steppe of Inner Mongolia, China

    分类: 生物学 >> 植物学 提交时间: 2018-07-05 合作期刊: 《干旱区科学》

    摘要: In order to explore the effects of grazing frequency on functional traits and to test whether Stipa gandis has compensatory photosynthesis during the frequent grazing period, we investigated morphological traits, biomass allocation, photosynthetic traits, and chlorophyll fluorescence parameters of the species in Inner Mongolia, China. The grazing frequency treatments included fencing (T0), grazing in May and July (T1, i.e., two months per year) and grazing from May to September (T2, i.e., continuous five months per year). Results indicate that T1 and T2 treatments did not affect individual biomass, but T2 treatment negatively affected individual size, i.e., plant height, stem length, and leaf length. Physiological traits of S. grandis were significantly affected by grazing, year, and their interaction. In July 2014 (i.e., dry environment and low relative humidity), the photosynthetic rate, transpiration rate and water use efficiency were highest under T2 treatment, which was caused by the increase in stomatal conductance. However, in July 2015 (i.e., wet environment and high relative humidity), the photosynthetic rate and water use efficiency were higher under T1 and T2 treatments, which were caused by the increase in actual quantum efficiency and stomatal conductance. Our results implied that under frequent grazing treatment, S. grandis had small height and efficient compensatory photosynthesis, which promoted its resistance to severe grazing.